
An Introduction to ScaLAPACK

Tony Drummond
Lawrence Berkeley National Laboratory
LADrummond@lbl.gov

An Introduction to ScaLAPACK

Outline:
• Introduction
• Applications
• ScaLAPACK Functionality
• Software Hierarchy and Interfaces
• ScaLAPACK User Interface
• Performance
• Afternoon: Hands-ON

An Introduction to ScaLAPACK

• Susan Blackford
• Jaeyoung Choi, Soongsil University
• Andy Cleary, LLNL
• Ed D'Azevedo, ORNL
• Jim Demmel, UCB
• Inderjit Dhillon, UT Austin
• Jack Dongarra, UTK
• Ray Fellers, LLNL
• Sven Hammarling, NAG
• Greg Henry, Intel
• Sherry Li, LBNL
• Osni Marques, LBNL
• Caroline Papadopoulos, UCSD
• Antoine Petitet, UTK
• Ken Stanley, UCB
• Francoise Tisseur, Manchester

Team of Developers:

MOTIVATION: Applications

MOTIVATION: Applications

An Introduction to ScaLAPACK

Outline:
• Introduction
• Applications
• ScaLAPACK Functionality
• Software Hierarchy and Interfaces
• ScaLAPACK User Interface
• Performance
• Afternoon: Hands-ON

ScaLAPACK’s Functionality

An Introduction to ScaLAPACK

Outline:
• Introduction
• Applications
• ScaLAPACK Functionality
• Software Hierarchy and Interfaces
• ScaLAPACK User Interface
• Performance
• Afternoon: Hands-ON

ScaLAPACK’s Software Structure

ScaLAPACK

BLAS

LAPACK BLACS

MPI/PVM/...

PBLAS
Global
Local

platform specific

Version 1.7 released in August 2001;
new developments under way.

BLAS: Basic Linear Algebra Subroutines

• Level 1 BLAS: vector-vector

• Level 2 BLAS: matrix-vector

• Level 3 BLAS: matrix-matrix

+ *

*

+ *

100

266

707

1880

5000

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

M
flo

p/
s

order of matrix/vector

BLAS 1
BLAS 2
BLAS 3

2.2 GHz AMD Opteron

Design Considerations:
• Portability
• Performance: development of blocked

algorithms is important for performance!

BLAS LEVELS:

LAPACK: A Dense Linear Algebra Package

• Linear Algebra library written in Fortran 77 (Fortran 90)

• Combine algorithms from LINPACK and EISPACK into

	 a single package.

• Efficient on a wide range of computers (RISC, Vector, SMPs).

• Built atop level 1, 2, and 3 BLAS Basic problems:

– Linear systems:

– Least squares:

– Singular value decomposition:

– Eigenvalues and eigenvectors:

• LAPACK does not provide routines for structured problems or general
sparse matrices (i.e. sparse storage formats such as compressed-row,
-column, -diagonal, skyline ...).

netlib.org

BLACS:
Basic Linear Algebra Communication Subroutines

• Response to Message Passing based distributed
communications

• Associate widely recognized mnemonic names with
communication operations. This improves:

– program readability

– self-documenting quality of the code.

• Promote efficiency by identifying frequently
occurring operations of linear algebra which can be
optimized on various computers.

Basic Concepts of The BLACS Interface

• Promote efficiency by identifying common operations of linear algebra
that can be optimized on various computers.

• Processes are embedded in a two-dimensional grid.

	 Example: a 3x4 grid

• An operation which involves more than one sender and one receiver is
called a scoped operation.

10 32

 0

0

 1 2 3

54 76

98 1110

1

2

BLACS Communication Routines

Send/Receive:
 _xxSD2D(ICTXT,[UPLO,DIAG],M,N,A,LDA,RDEST,CDEST)
 _xxRV2D(ICTXT,[UPLO,DIAG],M,N,A,LDA,RSRC,CSRC)

Broadcast:
_xxBS2D(ICTXT,SCOPE,TOP,[UPLO,DIAG],M,N,A,LDA)
_xxBR2D(ICTXT,SCOPE,TOP,[UPLO,DIAG],M,N,A,LDA,RSRC,CSRC)

BLACS Context

• BLACS context ⇔ MPI communicator

• The BLACS context is the BLACS mechanism for partitioning
communication space.

• A message in a context cannot be sent or received in another context.

• The context allows the user to

– create arbitrary groups of processes

– create multiple overlapping and/or disjoint grids

– isolate each process grid so that grids do not interfere with each
other

An Example Code Using BLACS

 M

* Get system information
 CALL BLACS_PINFO(IAM, NPROCS)
 M
* Get default system context
 CALL BLACS_GET(0, 0, ICTXT)
 M
* Define 1 x (NPROCS/2+1) process grid
 NPROW = 1
 NPCOL = NPROCS / 2 + 1
 CALL BLACS_GRIDINIT(ICTXT, ‘Row’, NPROW, NPCOL)
 CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)
* If I’m not in the grid, go to end of program
 IF(MYROW.NE.-1) THEN
 IF(MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN
 CALL DGESD2D(ICTXT, 5, 1, X, 5, 1, 0)
 ELSE IF(MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN
 CALL DGERV2D(ICTXT, 5, 1, Y, 5, 0, 0)
 END IF
 M

 CALL BLACS_GRIDEXIT(ICTXT)
 END IF
 M
 CALL BLACS_EXIT(0)
 END

send X to process (1,0)

(output)
process row and

column coordinate

receive X from process (0,0)

leave context

exit from the BLACS

(out) uniquely identifies each process
(out) number of processes available

(in) integer handle indicating the context
(in) use (default) system context
(out) BLACS context

PBLAS: Parallel BLAS

• Similar to the BLAS in portability, functionality and naming.

• Built atop the BLAS and BLACS

• Provide global view of matrix

 CALL DGEXXX(M, N, A(IA, JA), LDA, ...)

 CALL PDGEXXX(M, N, A, IA, JA, DESCA, ...)

BLAS

PBLAS

Array descriptor (to
be reviewed later)

A(IA:IA+M-1,JA:JA+N-1)

 JA

IA

N_

N

MM_

An Introduction to ScaLAPACK

Outline:
• Introduction
• Applications
• ScaLAPACK Functionality
• Software Hierarchy and Interfaces
• ScaLAPACK User Interface
• Performance
• Afternoon: Hands-ON

ScaLAPACK Design Goals

• Efficiency
–Optimized computation and communication engines

–Block-partitioned algorithms (Level 3 BLAS) for good node performance

• Reliability
–Whenever possible, use LAPACK algorithms and error bounds.

• Scalability
–As the problem size and number of processors grow
–Replace LAPACK algorithm that did not scale (new ones into LAPACK)

• Portability
–Isolate machine dependencies to BLAS and the BLACS

• Flexibility

–Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)

• Ease-of-Use
–Calling interface similar to LAPACK

ScaLAPACK: Data Layouts

• 1D block and column distributions

• 1D block-cycle column and 2D block-cyclic distribution

• 2D block-cyclic distribution used in ScaLAPACK for dense matrices

How does 2D Block Cyclic Distribution Work

5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view

0 1

2 3

An Example of 2D Block Cyclic Distribution

 M

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

IF (MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN
 A(1) = 1.1; A(2) = -2.1; A(3) = -5.1;
 A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;
 A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;
ELSE IF (MYROW.EQ.0 .AND. MYCOL.EQ.1) THEN
 A(1) = 1.3; A(2) = 2.3; A(3) = -5.3;
 A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;
ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN
 A(1) = -3.1; A(2) = -4.1;
 A(1+LDA) = -3.2; A(2+LDA) = -4.2;
 A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;
ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.1) THEN
 A(1) = 3.3; A(2) = -4.3;
 A(1+LDA) = 3.4; A(2+LDA) = 4.4;
END IF

 M

CALL PDGESVD(JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU,
 JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK,
 INFO)
 M

0 1

2 3

0 1

0

1

LDA is the leading
dimension of the local

array

Why the headache of 2D block Cyclic Distribution?

• Ensures good load balance → performance and scalability

 (analysis of many algorithms to justify this layout).

• Encompasses a large number of data distribution schemes (but
not all).

• Needs redistribution routines to go from one distribution to the
other.

• See http://acts.nersc.gov/scalapack/hands-on/datadist.html

AID: http://acts.nersc.gov/scalapack/hands-on/datadist.html

ScaLAPACK: Array Descriptors

• Each global data object is assigned an array descriptor.

• The array descriptor:

– Contains information required to establish mapping between a global
array entry and its corresponding process and memory location (uses
concept of BLACS context).

– Is differentiated by the DTYPE_ (first entry) in the descriptor.

– Provides a flexible framework to easily specify additional data
distributions or matrix types.

• User must distribute all global arrays prior to the invocation of a
ScaLAPACK routine, for example:

– Each process generates its own submatrix.

– One processor reads the matrix from a file and send pieces to other
processors (may require message-passing for this).

Array Descriptor for Dense Matrices

Array Descriptor for Narrow Band Matrices

Array Descriptor for
Right Hand Sides for Narrow Band Linear Solvers

ScaLAPACK Routines

Three types of routines:
• Driver routines: each of which solves a complete problem, for example, solving a

system of linear equations or computing the eigenvalues of a real symmetric
matrix.

• Computational routines: each of which performs a distinct computational task,
for example an LU factorization or the reduction of a real symmetric matrix to
tridiagonal form. Each driver routine calls a sequence of computational routines.
Global and local input error-checking are performed for these routines.

• Auxiliary routines: which in turn can be classified as follows:
• routines that perform subtasks of block-partitioned algorithms -- in

particular, routines that implement unblocked versions of the algorithms;
and

• routines that perform some commonly required low-level computations, for
example, scaling a matrix, computing a matrix-norm, or generating an
elementary Householder matrix.

ScaLAPACK Functionality

Ax = b
Driver type

Factor Solve Inversion Conditioning
estimator

Iterative
RefinementSimple Expert

Triangular x x x x x

SPD
SPD Banded
SPD Tridiagonal

x
x
x

x

x
x
x

x
x
x

x

x

x

General
General Banded
General Tridiagonal

x
x
x

x

x
x
x

x
x
x

x x x

Least Squares
GQR
GRQ

x
x
x
x

x

Ax = λx or Ax = λBx Simple Expert Reduce Solve

Symmetric
General
Generalized BSPD
SVD

x
x
x

x
x

x
x
x
x

x
x
x
x

ScaLAPACK: Error Handling

• Driver and computational routines perform global and local
input error-checking.

– Global checking → synchronization

– Local checking → validity

• No input error-checking is performed on the auxiliary
routines.

• If an error is detected in a PBLAS or BLACS routine
program execution stops.

ScaLAPACK: Debugging Hints

• Look at ScaLAPACK example programs.

• Always check the value of INFO on exit from a
ScaLAPACK routine.

• Query for size of workspace, LWORK = –1.

• Link to the Debug Level 1 BLACS (specified by
BLACSDBGLVL=1 in Bmake.inc).

• Consult errata files on netlib:
 http://www.netlib.org/scalapack/errata.scalapack

 http://www.netlib.org/blacs/errata.blacs

An Introduction to ScaLAPACK

Outline:
• Introduction
• Applications
• ScaLAPACK Functionality
• Software Hierarchy and Interfaces
• ScaLAPACK User Interface
• Performance
• Afternoon: Hands-ON

ScaLAPACK Performance

ScaLAPACK Performance

ScaLAPACK Performance

Commercial use of ScaLAPACK

ScaLAPACK has been incorporated in the following commercial
packages:

– Fujitsu

– Hewlett-Packard

– Hitachi

– IBM Parallel ESSL

– NAG Numerical Library

– Cray LIBSCI

– NEC Scientific Software Library

– Sun Scientific Software Library

– Visual Numerics (IMSL)

Summary ScaLAPACK

• Library of high performance dense linear algebra routines for
distributed-memory computing

• Reliable scalableandportable

• Reliable, scalable and portable

• Calling interface similar to LAPACK

• New developments on the way

• LAPACK/ScaLAPACK Forum:

http://icl.cs.utk.edu/lapack-forum

• ScaLAPACK Users' Guide: http://www.netlib.org/scalapack/slug

